Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 130: 111678, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38368773

RESUMEN

Aldosterone is a key mineralocorticoid involved in regulating the concentration of blood electrolytes and physiological volume balance. Activation of mineralocorticoid receptor (MR) has been recently reported to participate in adaptive and innate immune responses under inflammation. Here, we evaluated the role of aldosterone and MR in inflammation bowel diseases (IBD). Aldosterone elevated in the colon of DSS-induced colitis mice. Aldosterone addition induced IL17 production and ROS/RNS level in group 3 innate lymphoid cells (ILC3s) and exacerbated intestinal injury. A selective mineralocorticoid receptor antagonism, eplerenone, inhibited IL17-producing ILC3s and its ROS/RNS production, protected mice from DSS-induced colitis. Mice lacking Nr3c2 (MR coding gene) in ILC3s exhibited decreased IL17 and ROS/RNS production, which alleviated colitis and colitis-associated colorectal cancer (CAC). Further experiments revealed that MR could directly bind to IL17A promoter and facilitate its transcription, which could be enhanced by aldosterone. Thus, our findings demonstrated the critical role of aldosterone-MR-IL17 signaling in ILC3s and gut homeostasis, indicating the therapeutic strategy of eplerenone in IBD clinical trial.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Eplerenona , Mineralocorticoides/metabolismo , Inmunidad Innata , Especies Reactivas de Oxígeno/metabolismo , Linfocitos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inflamación/metabolismo
2.
Ecotoxicol Environ Saf ; 256: 114861, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027943

RESUMEN

The brain barrier is an important structure for metal ion homeostasis. According to studies, lead (Pb) exposure disrupts the transportation of copper (Cu) through the brain barrier, which may cause impairment of the nervous system; however, the specific mechanism is unknown. The previous studies suggested the X-linked inhibitor of apoptosis (XIAP) is a sensor for cellular Cu level which mediate the degradation of the MURR1 domain-containing 1 (COMMD1) protein. XIAP/COMMD1 axis was thought to be an important regulator in Cu metabolism maintenance. In this study, the role of XIAP-regulated COMMD1 protein degradation in Pb-induced Cu disorders in brain barrier cells was investigated. Pb exposure significantly increased Cu levels in both cell types, according to atomic absorption technology testing. Western blotting and reverse transcription PCR (RT-PCR) showed that COMMD1 protein levels were significantly increased, whereas XIAP, ATP7A, and ATP7B protein levels were significantly decreased. However, there were no significant effects at the messenger RNA (mRNA) level (XIAP, ATP7A, and ATP7B). Pb-induced Cu accumulation and ATP7B expression were reduced when COMMD1 was knocked down by transient small interfering RNA (siRNA) transfection. In addition, transient plasmid transfection of XIAP before Pb exposure reduced Pb-induced Cu accumulation, increased COMMD1 protein levels, and decreased ATP7B levels. In conclusion, Pb exposure can reduce XIAP protein expression, increase COMMD1 protein levels, and specifically decrease ATP7B protein levels, resulting in Cu accumulation in brain barrier cells.


Asunto(s)
Cobre , Plomo , Cobre/metabolismo , Plomo/metabolismo , Proteolisis , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Trifosfatasas/metabolismo , ARN Interferente Pequeño/metabolismo , Encéfalo/metabolismo
3.
Dis Markers ; 2022: 6899777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923244

RESUMEN

Backgrounds: Long noncoding RNAs (lncRNAs) are strongly associated with the development of breast cancer (BC). As yet, the function of LINC01234 in BC remains unknown. Methods: Using biological information, the potential lncRNA, miRNA, and target gene were predicted. LINC01234 and miR-525-5p expression in BC tissues was detected using quantitative real-time reverse transcription polymerase chain reaction. Fluorescence in situ hybridization was used to determine the distribution of LINC01234. Cell proliferation was analyzed using CCK-8 assay, colony formation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and apoptosis evaluated using flow cytometry. Western blotting was used to evaluate protein expression. Dual-luciferase® reporter, RNA pull-down, and RNA immunoprecipitation assays were performed to analyze the binding relationships among LINC01234, miR-525-5p, and cold shock domain-containing E1 (CSDE1). Results: We screened out LINC01234, found to be significantly increased in BC tissues, associated with a poor prognosis, and positively correlated with tumor size of BC. Knockdown of LINC01234 suppressed BC cell growth and facilitated apoptosis. Dual-luciferase reporter®, RNA pull-down, and RNA immunoprecipitation assays confirmed that LINC01234 and CSDE1 directly interacted with miR-525-5p. Upregulation of miR-525-5p and suppression of CSDE1 inhibited BC cell growth and induced cell apoptosis. Conclusion: Upregulation of LINC01234 contributes to the development of BC through the miR-525-5p/CSDE1 axis. LINC01234 may be one of the potential diagnostic and treatment targets for BC.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Apoptosis/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Respuesta al Choque por Frío , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo
4.
Front Oncol ; 11: 773540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966680

RESUMEN

Angiographically silent cystoid macular edema (CME) is a rare complication from nab-paclitaxel. Here we report a 45-year-old woman with breast cancer who developed CME after several months of treatment with albumin-bound paclitaxel (nab-paclitaxel). Her visual acuity did not improve significantly with the cessation of nab-paclitaxel and intravitreal ranibizumab treatment. Then, brinzolamide eye drops were prescribed. One month later, her vision improved, with the macular edema significantly subsided. Finally, we reviewed other cases of CME induced by nab-paclitaxel that have been reported in the literature and discussed the underlying pathogenesis of nab-paclitaxel-induced CME.

5.
ACS Appl Mater Interfaces ; 11(13): 12544-12553, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30864779

RESUMEN

For lithium-sulfur (Li-S) batteries, a promising candidate for future high-energy storage devices, several prominent problems still need to be solved urgently, such as limited rate capability and poor cycle life caused by the insulating nature of sulfur and the shuttle of soluble polysulfides produced during battery operation. In this work, a facile vacuum filtration method is employed to graft polyethyleneimine to reduced graphene oxide (rGO) in a "hand-in-hand" way using the amino and catechol groups from polydopamine. The resulting polymer-reinforced rGO (PPG) film is applied as a free-standing auxiliary functional layer for Li-S batteries. It has been confirmed by both theoretical calculations and experimental methods that, benefiting from the rich amine groups and oxygen-containing functional groups, the as-prepared PPG composite film shows great ability to capture polysulfides. Moreover, its high conductivity enables itself to function as a polysulfide reservoir, thus facilitating the successive reutilization of the trapped active materials and improving sulfur utilization. For this reason, the PPG film can also be regarded as a cathode material, serving as a novel "SPPG cathode" together with the pure sulfur cathode. The cell assembled with the pure sulfur cathode and the PPG auxiliary functional layer displays high reversible capacity, excellent Coulombic efficiency, and good cycling stability, suggesting that the rational auxiliary functional layer design ensures a good match with pure sulfur cathodes and shows the potential to achieve energy-dense Li-S batteries.

6.
RSC Adv ; 9(32): 18196-18204, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35515251

RESUMEN

Herein, nanoscale iron (oxyhydr)oxide-coated carbon nanotube (CNT) filters were rationally designed for rapid and effective removal of Sb(iii) from water. These iron (oxyhydr)oxide particles (<5 nm) were uniformly coated onto the CNT sidewalls. The as-fabricated hybrid filter demonstrated improved sorption kinetics and capacity compared with the conventional batch system. At a flow rate of 6 mL min-1, a Sb(iii) pseudo-first-order adsorption rate constant of 0.051 and a removal efficiency of >99% was obtained when operated in the recirculation mode. The improved Sb(iii) sorption performance can be ascribed to the synergistic effects of convection-enhanced mass transport, limited pore size, and more exposed active sorption sites of the filters. The presence of 1-10 mmol L-1 of carbonate, sulfate, and chloride inhibits Sb(iii) removal negligibly. Exhausted hybrid filters can be effectively regenerated by an electrical field-assisted chemical washing method. STEM characterization confirmed that Sb was mainly sequestered by iron (oxyhydr)oxides. XPS, AFS and XAFS results suggest that a certain amount of Sb(iii) was converted to Sb(v) during filtration. DFT calculations further indicate that the bonding energy for Sb(iii) onto the iron (oxyhydr)oxides was 2.27-2.30 eV, and the adsorbed Sb(iii) tends to be oxidized.

7.
Ther Clin Risk Manag ; 14: 1871-1877, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323609

RESUMEN

OBJECTIVE: Septoplasty has been the definitive treatment for nasal septum deviation, but its postoperative procedure may affect patients' quality of life. While new procedures in general surgery, such as enhanced recovery after surgery (ERAS), can speed up postoperative rehabilitations to improve quality of life, it is rarely applied in the ear-nose-throat field. This study therefore aims to evaluate the application of ERAS in patients with nasal septum deviation as a means of improving perioperative outcomes. MATERIALS AND METHODS: Fifty patients with nasal septum deviation undergoing septoplasty were randomized as ERAS or control group (25 patients in both groups). Patients were investigated for outcomes including length of stay, operating time, bleeding volume, total cost, complications, and Self-Rating Anxiety Scale (SAS) and visual analog symptom score of nasal obstruction, sleep disturbance, and head facial pain. RESULTS: The preoperative anxiety in ERAS group (SAS 35.4±6.2) was lower than the control group (SAS 43.6±8.6). The anxiety levels in ERAS group (SAS 31.6±5.4) was also reduced compared to the control group (SAS 38.1±10.4) in the 3 days postsurgery, but showed no significant difference thereafter at 7 days postsurgery. In addition, the length of stay and total cost were significantly lower for the ERAS group as well. The visual analog symptom score of nasal obstruction, sleep disturbance, and head facial pain in ERAS group were all also found to be lower than the control group. The only outcomes with no significant differences were the operation time, blood volume, and complications between the groups. CONCLUSION: Our study indicated ERAS application can reduce hospital charges and postoperative pain in septoplasty, thereby improving patient quality of life and hospital expenses at the same time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...